Fused-s-triazino Heterocycles. XI. Displacement Reactions of 7,9-Dichloro-2,5-bis(trichloromethyl)-1,3,4,6,9b-pentaazaphenalene

John T. Shaw, Rodney S. Rapple [1], John C. Hicks [1] and John T. Vossers [1]

Department of Chemistry, Grove City College, Grove City, Pennsylvania 16127 Received August 5, 1983

The preparation of 7,9-dichloro-2,5-bis(trichloromethyl)-1,3,4,6,9b-pentaazaphenalene (1e) by the chlorination of 2-trichloromethyl-5-methyl-1,3,4,6,9b-pentaazaphenalene (1a) using molecular chlorine is described. Displacement of one or both trichloromethyl groups of 1e by a variety of nucleophiles led to the corresponding 7,9-dichloro-2,5-bis-substituted or 7,9-dichloro mixed 2,5-disubstituted derivatives. The reaction of 1a with N-chlorosuccinimide proved not to be a useful route to 1e but instead led primarily to substitution of positions 7 and/or 9 by chlorine.

J. Heterocyclic Chem., 21, 429 (1984).

A previous paper [2] described the preparation and nucleophilic displacement reactions of 7,9-dibromo-2-tribromomethyl-5-trichloromethyl-1,3,4,6,9b-pentaazaphenalene (2a) and 7,9-dibromo-2,5-bis(tribromomethyl)-1,3,4,6,9b-pentaazaphenalene (2b). The brominating conditions (a large excess of bromine and a reaction temperature of 75-80° with acetic acid/sodium acetate as solvent and basic catalyst respectively) used to convert 2-trichloromethyl-5-methyl-1,3,4,6,9b-pentaazaphenalene (1a) to 2a and 2,5-dimethyl-1,3,4,6,9b-pentaazaphenalene (1w) to 2b gave only blue taffy-like resins when chlorine was substituted for bromine in these reactions.

We have since found that 7,9-dichloro-2,5-bis(trichloromethyl)-1,3,4,6,9b-pentaazaphenalene (1e) can be prepared under suitable reaction conditions. Thus slow addition of the stoichiometric amount of chlorine gas at ~56° to 1a dissolved in acetic acid in the presence of sodium acetate gave a 58% yield of 1e. Use of 1w as substrate under the same reaction conditions gave only a 22% yield of highly impure 1e. Attempts to substitute the remaining hydrogen at position 8 of 1e by the further addition of one equivalent of chlorine during the chlorination of 1a were in vain. A much lower yield of 1e together with the formation of an intractable pale green oil resulted.

The use of N-chlorosuccinimide (3a) in refluxing chloroform to prepare 1e from 1a was investigated. While this method only gave very poor yields of 1e, it did allow the isolation of some of the same intermediates that formed during the reaction of 1a with molecular chlorine but which were troublesome to obtain under those reaction conditions. For example, reaction of 1a (1 mole) with 3a (2 moles) in refluxing chloroform for 2 hours gave three principal products which were isolated using column chromatography. Elemental and nmr analysis completely characterised one of these products as 7,9-dichloro-2-trichloromethyl-5-methyl-1,3,4,6,9b-pentaazaphenalene (1d) (12% yield). The remaining two are in doubt as to whether the chlorine atom introduced is at position 7 or 9: 7(or 9)-chloro-2-trichloromethyl-5-methyl-1,3,4,6,9b-pentaaza-

phenalene (1b), melting point 256-258° (10% yield), and 7(or 9)-chloro-2-trichloromethyl-5-methyl-1,3,4,6,9b-penta-azaphenalene (1c), melting point 211-213° (9% yield). Increasing the molar ratio of 3a/1a to 5 and the reflux period to 48 hours gave 1e and 1d as the only identifiable products in 8 and 35% yields respectively.

We have found 1e to be generally more soluble than 2a or 2b in chloroform, toluene, N,N-dimethylformamide and other organic solvents, thus avoiding the dilute solutions so often required in nucleophilic reactions of 2a and 2b. This enhanced solubility of 1e together with an improved

[1a, W, Z = H; 1b, 1c, (W = Cl, Z = H)]or (W = H, Z = Cl); 1d-1v, W, Z = Cl]

•	•
$la, X = CCl_3$	$Y = CH_3$
$\mathbf{1b}, \mathbf{X} = \mathbf{CCl_3},$	$Y = CH_3$
$1c, X = CCl_3,$	$Y = CH_3$
$1d, X = CCl_3,$	$Y = CH_3$
$\mathbf{1e}, \mathbf{X} = \mathbf{CCl}_3,$	$Y = CCl_3$
$\mathbf{1f}, X = CCl_3,$	$Y = NH(CH_2)_3CH_3$
$\mathbf{1g}, \mathbf{X} = \mathbf{CCl_3},$	$Y = N(CH_{\bullet}CH_{\bullet})_{\circ}$
$1h$, $X = CCl_3$,	Y = 1-pyrrolidino
$\mathbf{li}, \mathbf{X} = \mathbf{CCl_3},$	$Y = NHC_6H_4CH_{3-p}$
$1_{\mathbf{j}}, \mathbf{X} = \mathbf{CCl}_{3},$	$Y = NHC_6H_4OCH_3-p$
$1k$, $X = CCl_3$,	$Y = NHC_{\bullet}H_{\bullet}CO_{\bullet}CH_{3}-o$
$11, X = NH_2,$	$Y = NH_2$
$1m, X = NH(CH_2), CH_3,$	$Y = NH(CH_2) \cdot CH_3$
In, X = 1-pyrrolidino	Y = 1-pyrrolidino
10, X = 1-pyrrolidino	$Y = NH(CH_2), CH_3$
1p, X = 1-pyrrolidino	$Y = NHC_6H_4OCH_3p$
1q, X = 1-pyrrolidino	$Y = OCH_3$
1r, X = 1-pyrrolidino	$Y = OCH_2CH_2CH_3$
1s, X = 1-piperidino	Y = 1-piperidino
$1t, X = NHC_{\bullet}H_{\bullet}OCH_{3}p$	$Y = OCH_3$
$\mathbf{lu}, \mathbf{X} = \mathbf{OCH_3}$	$Y = OCH_3$
$\mathbf{lv}, \mathbf{X} = \mathbf{OCH_2CH_2CH_3}$	$Y = OCH_2CH_2CH_3$

Reaction Compound Temperature Yie		Yield	Mp (°C) [c] d Crystallization Molecular		Analysis % Calcd./Found				
No.	X/Y	Method	(hours)	% [b]	Solvent	Formula	С	Н	N
1 f	CCl ₃	A [d]	reflux/l	48	261-263 Carbon tetrachloride	$C_{13}H_{11}Cl_5N_6$	36.43 36.15	2.59 2.64	19.61 19.42
lg	NH(CH ₂) ₃ CH ₃ CCl ₃	A [e]	rt [f]/24	53	192-193	$C_{13}H_{11}Cl_5N_6$	36.43 36.34	2.59	19.61 19.66
li	$N(CH_2CH_3)_2$ CCl_3	B [g]	rt/0.5	59	Heptane 280-282 dec	$C_{16}H_{9}Cl_{5}N_{6}$	41.54	2.42 1.97	18.17
1k	NHC ₆ H₄CH₃-p CCl₃	B [h]	rt/2	47	Chlorobenzene/heptane 275-276 dec	C ₁₇ H,Cl ₅ N ₆ O ₂	41.28 40.30	2.13 1.79	17.88 16.59
11	NHC ₆ H ₄ CO ₂ CH ₃ -o NH ₂	C [i]	rt/1;	31	Toluene 400	C ₈ H ₅ Cl ₂ N ₇	40.55 35.57	1.79 1.87	16.33 36.30
1m	NH ₂ NH(CH ₂) ₃ CH ₃	C [j]	reflux/l reflux/l,	65	DMF/water 188-190	$C_{16}H_{21}Cl_2N_7$	35.68 50.26	1.69 5.54	36.02 25.65
ls	NH(CH ₂) ₃ CH ₃ 1-Piperidino	C	rt/24 rt/0.25,	75	Carbon tetrachloride 304-306	$C_{18}H_{21}Cl_2N_7$	49.96 53.20	5.61 5.21	25.83 24.13
	1-Piperidino		reflux/3	23	Toluene 218-220 dec		53.16 53.03	5.30 3.98	24.37 22.79
1p	l-Pyrrolidino NHC ₆ H₄OCH₃-p	D [k]	reflux/1, rt/24		Toluene	C ₁₉ H ₁₇ Cl ₂ N ₇ O	52.80	4.08	22.50
lq	1-Pyrrolidino OCH ₃	E [I]	reflux/1.5	73	241-242 Toluene	$C_{13}H_{12}Cl_2N_6O$	46.03 45.82	3.57 3.33	$24.78 \\ 24.74$
lt	NHC ₆ H₄OCH ₃ -p OCH₃	E [m]	$\sim 70/0.5$, rt/24	65	305-306 2-Methoxyethanol	$C_{16}H_{12}Cl_2N_6O_2$	49.12 49.48	3.09 2.88	$21.48 \\ 21.19$
1v	OCH ₂ CH ₂ CH ₃ OCH ₂ CH ₂ CH ₃	F [n]	~ 75/2	47	177-179 1-Propanol	$C_{14}H_{15}Cl_2N_5O_2$	47.20 47.44	4.25 4.10	19.66 19.42

[a] The ir spectra of the compounds listed supported the structures shown; the pmr spectra of the compounds listed showed the expected signals for the X and Y groups and delta values of 7.3-8.4 for Hg. [b] Crude yields, no attempt was made to optimize yields. [c] Melting point of the recrystallized product. [d] n-Butylamine (0.0082 mole) and 10 ml of chloroform served as nucleophile and solvent respectively; after addition of the nucleophile, the remainder of the reaction was carried out at reflux, the crude product being filtered at room temperature without evaporation of solvent. [e] Diethylamine (0.0082 mole) and a solution of dry chloroform and dry toluene, 10 ml each, served as nucleophile and solvent respectively; the crude product was chromatographed over 50 g of silica gel using chloroform-ethyl acetate (95:5) as eluent. [f] Room temperature. [g] The reaction mixture was evaporated to 1/10 volume before filtration. [h] Methyl anthranilate (0.042 mole) and 4-dimethylaminopyridine (0.002 mole) served as nucleophile and acylation catalyst respectively. [i] Twenty ml of dry acetonitrile was the solvent; a gentle stream of ammonia was passed through the reaction mixture, first at room temperature for 1 hour, then at reflux for 1 hour. [j] A solution of dry chloroform and dry toluene, 10 ml each, served as solvent; the crude product was chromatographed over 60 g silica gel using chloroform-ethyl acetate (95:5) as eluent. [k] Compound 1j (0.002 mole), pyrrolidine (0.008 mole) and 100 ml of dry toluene served as substrate, nucleophile and solvent respectively. [1] Dry methanol and dry toluene, 10 ml each, served as solvent; benzyltrimethylammonium methoxide (0.00033 mole) provided the base catalysis, and crude 1q was obtained by simple filtration, no chromatography being required. [m] Compound 1j (0.002 mole), benzyltrimethylammonium methoxide (0.001 mole), and a solution of 175 ml of dry toluene and 20 ml of dry methanol served as substrate, basic catalyst, and solvent respectively; the methoxide catalyst was added over a period of 0.5 hours at 70°; crude 1t was obtained by simple filtration, no chromatography being required. [n] Sodium 1-propoxide (20% in 1-propanol) (0.0015 mole) and a solution of 63 ml of dry 1-propanol and 10 ml of dry toluene served as basic catalyst and solvent respectively; the catalyst was added over a period of 2 hours at ~75°; crude 1v was chromatographed over 50 g of silica gel using chloroform-methanol (95:5) as eluent.

stability to heat and what appears to be a higher degree of reactivity toward various nucleophiles made possible the variety of compounds shown in Table 1. As was the case with 2a or 2b, displacement of the trichloromethyl groups of 1e by simple alcohols required the presence of catalytic quantities of the corresponding alkoxide. Displacement of one trichloromthyl group of 1e by primary or secondary amines(aliphatic or aromatic) was in general rapid; displacement of the second trichloromethyl group depended on the type of amine and varied from rapid displace(pyr-

rolidine) to no or little displacement accompanied by decomposition and undesired by-products(p-anisidine). It should be noted that compounds corresponding to 1g, 1k, 1p and 1t had been attempted from 2b or derivatives of 2b [2], and could not be prepared.

EXPERIMENTAL

Melting points were determined in open capillaries on a Thomas-Hoover melting point bath and are uncorrected. Infrared spectra were recorded using a Perkin-Elmer 735B spectrophotometer. The pmr spectra were determined on a Varian EM-360 spectrometer using TMS as an internal reference. Analyses were performed by Micro-analyses Inc., Wilmington, Delaware. All evaporations were carried out on a rotary evaporator at reduced pressure.

N,N-Dimethylformamide (DMF), chloroform and toluene were dried using standard methods and stored over molecular sieves. Woelm silica gel (70-230 mesh) for column chromatography was obtained from ICN Pharmaceutical Inc. Compounds 1a [3] and 1w [4] were prepared using methods described in the literature.

7,9-Dichloro-2,5-bis(trichloromethyl)-1,3,4,6,9b-pentaazaphenalene (1e).

A stream of chlorine gas was passed through a vigorously stirred solution of 24.6 g (0.3 mole) of anhydrous sodium acetate and 9.06 g (0.03 mole) of 1a in 150 ml of acetic acid maintained at 53-59°. After 10.8 g (0.15 mole) of chlorine was added (~2 hours) the reaction was stirred for an additional hour at 53-59°, then cooled to room temperature and filtered. The blue filter cake was washed with a small portion of acetic acid and then with petroleum ether (30-60°) until the washings ran clear. The resulting product was heated to boiling with 175 ml of toluene, filtered and the filtrate was evaporated to dryness, 8.23 g (58%), mp 303-305°. Recrystallization from toluene gave beautiful royal blue crystals, mp 306-308°; pmr (deuteriochloroform): δ 7.73 (s, 1H, H₈).

Anal. Calcd. for C₁₀HCl₈N₅: C, 25.30; H, 0.21; N, 14.75; Cl, 59.74. Found: C, 25.59; H, 0.30; N, 14.51; Cl, 59.68.

Attempts to shorten the reaction time by increasing the rate of addition of chlorine or raising the temperature resulted in lower yields of 1e.

Reaction of 2-Trichloromethyl-5-methyl-1,3,4,6,9b-pentaazaphenalene (1a) (1 mole) with N-Chlorosuccinimide (3a) (2 moles).

A solution of 2.0 g (0.0066 mole) of 1a, 1.77 g (0.0133 mole) of 3a and 30 ml of chloroform was refluxed for 2 hours. The solution was evaporated to dryness and the residue, which was chromatographed over 120 g of silica gel using methylene chloride-ethyl acetate (90/10) as eluent, gave the following products:

The first fraction (blue) yielded 0.29 g (12%) of crude **1d**, mp 145-150°. Recrystallization from toluene-petroleum ether (60-90°) gave blue crystals, mp 157-158°; pmr (deuteriochloroform): δ 2.10 (s, 3H, CH₃), 7.70 (s, 1H, H₈).

Anal. Calcd. for $C_{10}H_4Cl_5N_5$: C, 32.33; H, 1.09; N, 18.86. Found: C, 32.58; H, 1.20; N, 18.93.

The second fraction (purple) yielded 0.23 g (10%) of crude **1b**, mp 245-249°. Recrystallization from toluene gave purple crystals, mp 256-258°; pmr (deuteriochloroform): δ 2.17 (s, 3H, CH₃), 6.29 [d (J = 8 Hz), 1H, H₇ or H₉], 7.52 [d (J = 8 Hz), 1H, H₈].

Anal. Calcd. for $C_{10}H_5Cl_4N_5$: C, 35.64; H, 1.50; N, 20.79. Found: C, 35.73; H, 1.32; N, 20.66.

The third fraction (purple) yielded 0.19 g (9%) of crude 1c, mp 203-206°. Recrystallization from toluene-hexane gave purple crystals mp 211-213°; pmr (deuteriochloroform): δ 2.11 (s, 3H, CH₃), 6.35 [d (J = 8 Hz), 1H, H₇ or H₉], 7.60 [d (J = 8 Hz), 1H, H₈].

Anal. Calcd. for $C_{10}H_5Cl_4N_5$: C, 35.64; H, 1.50; N, 20.79. Found: C, 35.59; H, 1.56; N, 20.60.

There was considerable tarry material retained by the column.

Reaction of 2-Trichloromethyl-5-methyl-1,3,4,6,9b-pentaazaphenalene (1a) (1 mole) with N-Chlorosuccinimide (3a) (5 moles).

A solution of 2.0 g (0.0066 mole) of 1a, 4.4 g (0.033 mole) of 3a and 30 ml of chloroform was refluxed for 48 hours. The solution was evaporated to dryness and the residue, which was chromatographed over 120 g of silica gel using methylene chloride-ethyl acetate (90/10) as eluent gave the following products:

The first fraction (blue) gave 0.24 g (8%) of crude 1e, mp 295-298°. Recrystallization from toluene gave royal blue crystals whose physical properties were identical to 1e prepared by chlorination of 1a using molecular chlorine as given above.

The second and third fractions (both blue) yielded small amounts (0.05 g and 0.08 g respectively) of resinous materials which resisted further

purification.

The fourth fraction (blue) gave 0.86 g (35%) of crude 1d, mp 149-153°. Recrystallization from toluene-petroleum ether (60-90°) gave blue crystals, mp 157-158°, and with other physical properties identical to 1d prepared above.

There was considerable tarry material retained by the column.

Increasing the molar ratio of **3a/la** to 6 or 10 gave essentially the same result.

The following examples are illustrative of the methods used to prepare the compounds listed in Table 1.

Method A.

7,9-Dichloro-2-trichloromethyl-5-(1-pyrrolidino)-1,3,4,6,9b-pentaazaphenalene (1h).

A stirred solution of 1.0 g (0.0021 mole) of 1e in 100 ml of dry toluene was treated dropwise over a period of 30 minutes at 8-10° with a solution of 0.15 g (0.0021 mole) of pyrrolidine in 20 ml of dry toluene. Following an additional 10 minute reaction period, the mixture was evaporated to almost dryness and the residue was collected by filtration with the aid of petroleum ether (30-60°), 0.85 g (95%); mp 268-270° dec. Recrystallization from carbon tetrachloride gave red crystals, mp 270-271° dec; pmr (deuteriochloroform): δ 1.90 (m, 4H, CH₂CH₂), 3.65 (m, 4H, CH₂NCH₂), 7.57 (s, 1H, H₈).

Anal. Calcd. for C₁₃H_oCl₅N₆: C, 36.60; H, 2.13; N, 19.71. Found: C, 36.42; H, 1.92; N, 19.54.

Method B.

2-(p-Anisidino)-7,9-dichloro-5-trichloromethyl-1,3,4,6,9b-pentaazaphenalene (1i).

A stirred solution of 1.0 g (0.0021 mole) of le in 10 ml of dry DMF was treated in one portion at room temperature with a solution of 2.46 g (0.02 mole) of p-anisidine. Following an additional 30 minute reaction period, the thick red mixture was filtered and the filter cake was washed with ether, 0.50 g (49%), mp 283-287° dec. Recrystallization from DMF gave pale-red crystals, mp 288-290° dec; ir λ (nujol): μ m 2.94 (NH); pmr (very low solubility precluded pmr analysis).

Anal. Calcd. for $C_{16}H_9Cl_5N_6O$: C, 40.15; H, 1.90; N, 17.56. Found: C, 39.86; H, 1.63; N, 17.59.

Method C.

7,9-Dichloro-2,5-bis(1-pyrrolidino)-1,3,4,6,9b-pentaazaphenalene (1n).

A stirred solution of 1.0 g (0.0021 mole) of 1e in 10 ml of dry toluene was treated at room temperature with 0.6 g (0.0084 mole) of pyrrolidine-(in one portion). A mild exotherm (10°) was noticed and the mixture was stirred for an additional 15 minutes followed by a 35 minute reflux period. The brownish-orange solid that had formed was collected at room temperature by vacuum filtration and washed with petroleum ether (30-60°), 0.65 g (82%), mp 330-333° dec. Recrystallization from toluene gave golden crystals, mp 330-332° dec; pmr (deuteriochloroform): δ 1.87 [m, 8H, bis(CH₂CH₂)], 3.59 [m, 8H, bis(CH₂NCH₃)], 7.32 (s, 1H, H₈).

Anal. Calcd. for $C_{16}H_{17}Cl_2N_7$: C, 50.80; H, 4.53; N, 25.93. Found: C, 50.56; H, 4.78; N, 25.70.

Method D.

2-(n-Butylamino)-7,9-dichloro-5-(1-pyrrolidino)-1,3,4,6,9b-pentaazaphenal-ene (1a)

A stirred mixture of 1 g (0.0023 mole) of 1h, 0.67 g (0.0092 mole) of n-butylamine and 10 ml of dry chloroform was refluxed for 1 hour and then allowed an additional 22 hours of reaction time at room temperature. The insoluble material was filtered at room temperature and washed with ether, 0.69 g (79%), mp 268-270°. Recrystallization from toluene gave very fluffy yellow crystals with the same melting point; ir λ (nujol): μ m 3,08 (NH); pmr (very low solubility precluded pmr analysis).

Anal. Calcd. for C₁₆H₁₉Cl₂N₇: C, 50.53; H, 5.04; N, 25.78. Found: C, 50.34; H, 4.89; N, 25.72.

Method E.

7,9-Dichloro-2-(1-propoxy)-5-(1-pyrrolidino)-1,3,4,6,9b-pentaazaphenalene (1r).

A stirred solution of 1.0 g (0.0023 mole) of 1h in 10 ml of dry 1-propanol and 10 ml of dry toluene was treated at 75° with 0.16 g (0.00039 mole) of sodium propoxide (20% in 1-propanol) and maintained at this temperature for 15 minutes to complete the reaction (tlc). The residue obtained after evaporating the reaction mixture to dryness was chromatographed over 30 g of silica gel using chloroform-ethyl acetate (95:5) as eluent. The yellow fraction was collected and yielded 0.69 g (82%), mp 191-194°. Recrystallization from 1-propanol gave bright yellow crystals, mp 200-202°; pmr (deuteriochloroform): δ 0.98 [t (J = 6 Hz), 3H, CH₃], 1.78 [m, 6H, propoxy (CH₂) and pyrrolidino (CH₂CH₂)], 3.6 [m, 4H, (CH₂N-CH₂)], 4.28 [t, (J = 6 Hz), 2H, CH₂O], 8.18 (s, 1H, H₈).

Anal. Calcd. for C₁₅H₁₆Cl₂N₆O: C, 49.06; H, 4.39; N, 22.89. Found: C, 49.23; H, 4.21; N, 22.64.

Method F.

7,9-Dichloro-2,5-dimethoxy-1,3,4,6,9b-pentaazaphenalene (1u).

After refluxing a stirred mixture of 1.0 g (0.0021 mole) of 1e in 25 ml of dry methanol for 10 minutes, the pH was adjusted to \sim 8 by the addition of 0.065 g (0.00036 mole) of benzyltrimethylammonium methoxide

(40% in methanol). Analysis (tlc) showed that after 20 minutes additional refluxing there was no longer any 1e present. The precipitate that formed on chilling the reaction mixture was filtered and washed with a little cold methanol, 0.52 g (83%), mp 238-239°. Recrystallization from toluene gave brownish-orange crystals with the same melting point; pmr (DMSO-d₆): δ 3.73 [s, 6H, 2(OCH₃)], 7.98 (s, 1H, H₈).

Anal. Calcd. for $C_{10}H_7Cl_2N_5O_2$: C, 40.02; H, 2.35; N, 23.34. Found: C, 40.06; H, 2.50; N, 23.48.

Acknowledgment.

Acknowledgment is made to the donors of the Petroleum Research Fund administered by the American Chemical Society for the support of this research.

REFERENCES AND NOTES

- [1] Petroleum Research Fund Undergraduate Research Participant. [2] J. T. Shaw, K. D. Starkey, D. J. Pelliccione and S. L. Barnhart, J. Heterocyclic Chem., in press.
- [3] J. T. Shaw, T. W. Coffindaffer, J. B. Stimmel and P. M. Lindley, ibid., 19, 357 (1982).
- [4] J. T. Shaw, M. E. O'Connor, R. C. Allen, W. M. Westler and B. D. Stefanko, *ibid.*, 11, 627 (1974).